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Abshwct. The rate of convergence of penalized maximum like- 
lihood estimation will be developd based on HeIlinger entropy with 
bracketing which measures the size of underlying spaces. 

1. In~odwctiom. In this paper, we address issues associated with penalized 
criterion (log-likelihood) function in general parameter space: consistency and 
rate of convergence. We derive a large deviation inequality associated with 
penalized log-likelihood function based on which the consistency and rate of 
convergence can be established. 

The use of criterion function with penalty has a long history, which goes 
back to Whittaker [13] and Tikhonov [lo]. To overcome some undesirable 
properties such as inconsistency and non-smoothness, a penalty measuring 
such properties of parameters is often attached to the criterion function. The 
estimate is obtained by optimizing the penalized criterion function. This meth- 
od is called the method of regularization. In statistics, using a penalty function 
can also be interpreted as formulating some prior knowledge about the pa- 
rameter of interest (Good and Gaskins [5]). 

The rate of convergence of penalized estimates has been studied by many 
authors. Among others, Wahba [I21 gives a review and contains many refer- 
ences. The paper by Cox and O'Sullivan [3] contains some general results for the 
rate of convergence of the penalized estimates based on the Sobolev spaces and 
the L2-penalty. Van de Geer Ell] uses entropy approach to establish the rate of 
convergence for estimates of a regression function by using the squared loss 
function. Gu and Qiu [6] consider the rate of convergence of smoothing spline 
density estimation in terms of the symmetrized Kullback-Leibler distance. 

In this paper, we will discuss the rate of convergence of penalized max- 
imum likelihood estimation. More precisely, a general theory for consistency 
and the rate of convergence based on an index measuring sizes of parameter 
spaces (bracketing L, (local) metric entropy) is established. This is done 
in a similar spirit to the rate of convergence of the sieve estimates as in Wong 
and Shen [14]. 
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Let Y1, . . ., Y, be independently distributed with density p (6, y). We estimate 
8 E @ based on a criterion function l(8, y), where 8 is a parameter space. Denote 
by L,(O) the scaled criterion function to be optimized, or n-'C:=, l(B, a. 
Write f(0, y) = I(0, y )  - A,J (B), where J (8) is a non-negative penalty function 
and An is the penalizing coefficient or degree of penalization. The corresponding 
penalized criterion function is 

 he- maximizer of the penalized criterion function, denoted by fin, is called 
a penalized estimate 

where a, -, 0 as n + a. This procedure is the method of regularization, which is 
called the penalized maximum likelihood estimation (PMLE) if I is log-likelihood. 

The consistency and the rate of convergence for PMLEs will be discussed 
in the next section. After that, an example, density estimation, will be presented 
to show the application of the method. 

2. Convergence properties for PMLEs. We will present an exponential in- 
equality for likelihood ratios with penalty. This inequality is based on appro- 
priate left truncations of the lower tails of likelihood ratios as in Wong and 
Shen [14]. Based on this inequality, the consistency and the rate of conver- 
gence for PMLEs under the Hellinger distance can be established under one 
simple condition on the Hellinger metric entropy with bracketing. 

Let$ 8xg-+9 with Ef2(8, Y)< oo for all B E @  and let 11.112 be the 
usual L2-norm, i.e. 

llf (8, Y)lI2 = (lf2(8, Y)c(Y))'~', 

where p(y) is the Lebesgue measure on W1. Let 9 = {f (8, .): 8 ~ 8 ,  11 f l l z  < m). 
For any given E > 0, if there exists 

s(&, n) = {f:,f", ..., fk,fE) c 9, with max 1 1  f;-fi112 < E 
l<j$n 

such that for any f E 9 there exists a j such that f f < f < f a.e., then S (E, n) is 
called a bracketing &-covering of 9 with respect to 1 1 . 1 1 2 .  H (E, F)  = log N (E, 9) 
is called the L, metric entropy of 9 with bracketing, where 

N (E ,  S) = min {n: S (E, n) is a bracketing €-covering of 9). 

In this paper, f will be the square root density, and H (E, a) is called the Hellinger 
entropy with bracketing. For more discussions about metric entropy, see, for 
example, Kolmogorov and Tihornirov My Birman and Solomjak [2], and 
Ossiander [8]. 
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Let p (8, y) be the underlying density. Let 

h C . 8 ) = ' 2  l l ~ " ~ k ~ ~ J - p ~ ~ ' ( 8 , y i ) 1 1 ~  and A ( k ) = ( q e B :  J ( q ) < k ) ,  ni,l 

where 1 1 . 1 1  is the usual L,-norm, i.e., 

I 1  f I 1  2 = (lf2 (4 d~ b))112 - 
Let Po = n - l z ; y l  Paqi, wherZP,, is the probability measure corresponding to 
the density funct~on p(0 ,  yi). In the following, k takes large values and ci are 
some positive -constants. ~ e t '  

9 1  (k) = {pli2(t11 Y ) :  VA(k) ) l  
and 

L1/2 

$ ( ~ , k ) >  j' H112(~yF l ( k ) )du /L  for O < L < l ,  
L 

where L= clgZ +A,(k-1) and 0 < c,  < 1. Note that if the integral on the 
right-hand side i s  monotone of k,  then we pick the integral as the $(E, k); 
otherwise, we can pick any upper bound function which is monotone in k. 

ASSUMPTION 2.1. Assume that there exists $(E, k) such that, for all small 
E > 0, $ ( E ,  k )  is non-increasing with respect to large k and 

THEOREM 2.1. Suppose that Assumption 2.1 holds and J(0)Rn < C , E ~ ,  where 
0 < c3 < e l .  Then for any E > 0 satisfying (2.1) and for 0 < c, < 1 -el 

where c5 and c, are positive constants depending on ci, 1 < i < 4. 

Proof.  The following notation will be used. Let 

= n-1 /2~ , ( I (q ,  Y)-I(8,  Y)) ,  

and 

Aij= ( ? E @ :  2 ' - ' ~  < ~ ( q ,  0) < 2 i ~ ,  2j11J(6) < J ( $  < 2jJ(8)),  

Aio = (?E@: Z i - l &  < ~ ( g ,  8) < 2 i ~ ,  J(q)  < J(8)) 

for i 7 j =  1, 2,  ... 
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Let ~ ( ~ l ( q ,  y) be the left truncation version of p(q, y), i.e., 

if P(?,  Y )  < ~ ~ P ( - T ) P  to, Y ) ,  
(q ,  y)  otherwise 

for any 0 < T < a. 
The truncation techniques in Wong and Shen [I43 will be used in the 

following derivations. Although the results in [14] are developed for indepen- 
dent and identically distributed observations, it can be seen that all results hold 
generally 'for eqliidistributed observations if the corresponding quantities in 
[14] are replaced by the average quantities based on each observation. By 
Lemma 4 of [14] we have 

where T = 2enp (- r/2)/( 1 - rixp (- r/2))'. 

Thus 

3 exp ( - c, m2)) 

Let us consider I,. Note that E' < h2 (0, q)  by choosing .r such that 
1-T-c4 > cl; then 

where M (i, j) = n1I2 [cl (2'- + A,, (23- 1) J (e)]. By Lemma 3 of Wong and 
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Shen [14] we have 

where v2 ( i ,  j) = 4exp (z) [(2'&)' +A, (2j - 1) J (811. 
We now verify the conditions in Lemma 7 of [14]. With specified M ( i , J  

and v (i, j) condition (2.3) of Lemma 7 holds. By Assumption 2.1 and the mono- 
tonicity property of H(u ,  .), 

thus condition (2.4) of Lemma 7 holds. Note that Lemma 7 of [I41 continues to 
hold if M ( i ,  j) > an112v2(i, j) for any i, j, where a = cil2 is a constant. There- 
fore, by Lemma 7, 

where 
cs = (1 -a) exp ( - r)/8 (a + 32 TI )  with Tl = (exp (r/2) - 1 - r/2)/(1- exp ( - r/2))'. 

Now let us consider I,.  Since A,J(8) < c3c2, we have 
w 

I2  < Po (sup n - l f 2  vn(1ogp(') ( IJ ,  Y)/p(B,  Y)) 2 e l  (2'-'e)' -An J (0)) 
i =  1 Aio 

where A4 (4 = (c, - ~ , ) n ~ / ~  (2'-' E)'. The result then follows from a similar ar- 
gument to that for 1'. This completes the proof. 

Remark. With the optimal choice of A, = C,E'/J(Q), for any E > 0 
satisfying 
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we have 

COROLLARY 2.1. Under Assumption 2.1, for the PMLE defined in ( 1 . 1 )  with 
an c7$, where 0 < c7 < e l ,  the rate of convergence under the Hellinger dis- 
tance is max ( E , ,  ;1,1i2), where E ,  is the smallest E satisfying (2.1). The best possible 
rqte of convergencefor PMLE is then determined by the smallest c. satisfying (2.2) 
with I , J ( 8 )  = c,E:. 

Proof.  By (l.l), we have 

Po ( h  (on, 8) 3 E )  < PO ( sup (En (v) - L,, (6)) 2 - a"). 
{q~@:h(t1.8) 3 a] 

By Theorem 2.1, h(dn, 8) = O,(sn) when AnJ(8) < e,s:. Note that s,, is the 
smallest E satisfying (2.2); then h (&, 0) = 0, if 8, is replaced by R;t2 when 
c: < J(O)A,. Then the result follows. rn 

3. Example: the density estimation. Let Y l ,  . . . , I.', be independently and 
identically distributed according to a density 8'. We estimate the square root 
density 

by the PML method. For the case of m > 1/2, 

where [m] is the integer part of m and r > l /m.  For the case of m < 1/2, 

Two results for metric entropies of different values of rn will be used. For 
the case of m > 1/2, by the norm equivalence (the Theorem of Adams [ I ] ,  p. 79) 
and Theorem 5.2 of Birman and Solomjak [ 2 ] ,  

For the case of m < 1/2, by Theorem 2 of Gabushin [4], 

I /  pl l l s u p  < d [J(v)](2m)1(2m+1);  
then 

H (u , S1 (k))  < exp (dl log (k(2m)l(2"+ /u) + d2 log (k/u)ltm) < co (k/u)lim 

for all small u > 0 and some constants di (see Theorem 15 of Kolmogorov and 
Tihomirov [7] for the corresponding constants for the sup-entropy). Take 
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$ (k) = c;j2 (1 - 1/2m) - (An (k - 1)) + 2m)/i4m) k l j ( 2 m )  if rn > 1/2, 

and 

then Assumption 2.1 is satisfied. 
By Corollary 2.1, the rate of convergence of PMLE /I(#,,, 8) = rnax(~,, xl'), 

where E, is the solution .. . of the equation 

where c2 = cit2 (1 - 1/2m)-' if m > 1/2; c2 = c:l2 if tn = 1/2; and c2 = 

~$~~(1 /2 rn -  1)-' if rn < 1/2. The resulting rate E, is O,(n-ml~Zmf ) if m > 1/2; 
O,(n-lt4 (logn)lt2) if rn = 1/2; 0, (n-"t2) if m < 1/2. Hence, with the choice of 
A, = E:, the best possible rate en for the PMLE under h(., .) is 0,(n-"f12m+1) 1 
if m > 1/2; 0,(n-1/4(logn)112) if rn = 1/2; and 0,(n-"12) if' m < 1/2. The rate 
obtained is optimal (Stone [9]). 
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